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Alternative factorization of eigenvalue problems in one 
dimension 

F M Femhdezt,  A Lopez Piiieiro and B Moreno 
Universidad de Extremadun. Departamento de Quimica Fisica, 06071-Ba&joz, Spain 

Received 30 November 1993 

Abstract We propose an altemative factorization of eigenvalue problems in one dimension. 
The method is based on simple equations connecting a pair of solutions to two second-order 
differential equations that differ in the coefficient of the independent variable. Under certlin 
conditions these connection equations play the role of recurrence relations. The method is 
pmicularly suitable for the UWment of separable quantum-mechanical problems giving rise 
to a consistency condition which tells us whether a potential is shape-invariant. From this 
consistency condition we derive B simple algorithm for the constmruction of parmer potentials 
and shape.invariant potentials. The present connection method appears to be more general than 
both the standxd factorization method and supersymmetric quantum mechanics. As illustrative 
e m p l e s  we consider Bessel's and Legendre's equations, the generalized Kepler problem, 
inverse quadratic potentials and an asymmetric potential well. 

1. Introduction 

Recently, Femindez [1,2], and Fernindez and Castro [3,4] developed a new approach to 
perturbation theory for separable quantum-mechanical problems which consists of writing 
the perturbed states Q in terms of the unperturbed one @ and its first derivative @' according 
to Q ( x )  = A ( x ) @ ( x )  + B(x)@'(x) .  The main advantage of this method is that @ does not 
appear explicitly in the coupled differential equations for the unknown functions A ( x )  and 
B ( x ) .  For this reason the results of this procedure apply to an arbitrary state of the system, 
allowing one to express the perturbed eigenvalue and eigenfunction in terms of the quantum 
numbers of the unperturbed problem. 

If instead of being solutions of unperturbed and perturbed problems the functions @ and 
W are two solutions of the same problem the connection method proposed by Fernhdez and 
Castro [4] resembles, when B ' ( x )  0, the factorization method extensively investigated 
by Infeld and Hull [ 5 ] .  However, the points of view of both approaches differ in that 
the latter attempts a factorization of a differential operator and the former focuses on the 
connection between two solutions. Although equivalent to both the factorization method 
and to supersymmetric quantum mechanics [6-81 when B' = 0, the connection method 
may be more general than the former approaches as it allows connection formulae with 
B' # 0. The purpose of this paper is to investigate the additional flexibility provided by 
this function. 

In section 2 we develop general equations which apply to most exactly solvable 
quantum-mechanical problems and compare the connection method with the factorization 

t Permanent address: QUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115. 
Casilla de Correo 962, 1900 La PlaW. Argentina. 
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method and its generalization by means of supersymmetric quantum mechanics [5-8]. In 
section 3 we derive recurrence relations for integrals which appear in the equation connecting 
the norms of a pair of solutions. In section 4 we obtain recurrence relations for Bessel's 
functions. In section 5 we treat Legendre's equation. In section 6 we consider the variation 
of two parameters in the quantum-mechanical eigenvalue equation for a generalized Kepler 
problem which are related to the angular and principal quantum numbers in the particular 
case of the Coulomb interaction. In section 7 we consider the eigenvalue equation for 
an arbitrary inverse quadratic potential from which one derives several exactly solvable 
problems in quantum mechanics. Among them we mention the associated spherical 
harmonics, the generalized spherical harmonics and the quantum-mechanical symmetric 
top. In section 8 we develop a simple algorithm for the systematic construction of partner 
and shape-invariant potentials. Further comments and conclusions are found in section 9. 

F M Femcindez et a1 

2. The method 

It is our purpose to connect a solution Y ( x )  to the ordinary differential equation 

P(x)Y"(x)  + Q(x)Y'(x) + &x)Y(x)  = 0 (1) 

with a solution Z(x) to a closely related equation 

P ( x ) Z " ( x )  + Q ( x ) Z ' ( x )  + &(x)Z(X) = 0. (2) 

Here, the prime denotes differentiation with respect to x and the coefficients P ( x ) ,  Q ( x ) ,  
& x )  and & ( x )  are real differentiable functions of the independent variable x in the interval 
( X I ,  x2). Although it is not strictly necessary, for simplicity we remove the first derivative 
in each equation by means of the transformations 

Y ( x )  = F ( x ) W ( x )  Z(x) = F ( x ) O ( x ) .  (3) 

Choosing 

the resulting differential equations for W ( x )  and d+) are 

P ( x ) W " ( x )  + R ( x ) Y ( x )  = 0 

P(x)@"(x)  + Ro(x)Q(x)  = 0 

(5) 

(6) 

where 

and similarly for R&). 
In this paper we try the following connection between Y ( x )  and @ ( x ) :  
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suggested by recent applications of perturbation theory to separable quantum-mechanical 
problems [ M I .  The functions A ( x )  and &x) are determined by the condition that (8) be a 
solution of (5) .  Substitution of (8) into ( 5 )  followed by elimination of the second and third 
derivatives of Q ( x )  by means of (6) leads to an equation for Q ( x )  and Q'(x) .  Choosing 
A ( x )  and i ( x )  so that the coefficients of the former functions vanish, we obtain the coupled 
ordinary differential equations 

PA" + (R - Ro)A - P - - ROE' = 0 (R3 
E B" + (R - R0)- +2A'=  0. P 

In order to remove P ( x )  from the denominators in (9) and (10) we define the new function 
B ( x )  = B ( x ) / P ( x )  so that those equations become 

P A " + ( R -  R o ) A - 2 P R o B ' - ( P R o ) ' B = O  

P E " + 2 P f B ' + P " B + ( R - R o ) B + 2 A ' = 0 .  

If there exist two differentiable functions A ( x )  and B ( x )  satisfying (11) and (12), then 
we derive a solution to (5) from a given solution to (6) according to (8). Moreover, the 
componding solutions to the original equations (1) and (2) are related by 

To obtain the inverse transformation to (8) we solve the linear system of two equations 
formed by (8) and its first derivative Y' = (A' - Rofi /P)Q + (A + &)a' for 0 and a'. 
The result is 

@ ( x )  = Ao(x)Y(x) + $(x)Y'(x) (14) 

where 

and 

Subtracting A times (10) from d times (9), one easily proves that C is independent of 
x .  The inverse transformation exists provided that C # 0. To derive Z(x) from Y ( x )  we 
simply interchange these functions in (13) and substitute A&) and Bo(x) for A ( x )  and 
B ( x ) ,  respectively. 

Assuming that the functions Y and Q vanish at the end-points of the interval (XI, x2) 

the connection formula (8) also allows us to relate the integrals of q2 and 9' over that 
interval. A straightforward integration by parts shows that 
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As shown in appendix 1, it is always possible to transform ( I )  and (2) into equivalent 
second-order differential equations with P = 1, Q = 0 and modified coefficients R and Ro. 
In some of such cases an appropriate change of the independent and dependent variables 
of the differential equation gives rise to connection formulae in which the function B(x) 
is simply a constant. This is a particularly interesting case because the relevant equations 
developed above reduce to 

A" + ( R  - R ~ ) A  - RAE = o 
( R  - Ro)B + 2A' = 0. 

(18) 

(1% 

If we differentiate (19) with respect to x ,  substitute the resulting equation into (18) and then 
solve for A we have 

RI+ RA 
A = B  

2 ( R  - Ro)' 

From (19) and (20) one easily obtains the following consistency condition: 

( R  - %)(R + R~)" + R: - RO + (R - R~) '  = 0. (21) 

If R and Ro satisfy this equation then B ( x )  = B ( x )  = B = constant (remember that P = 1 )  
in the connection formula (8). Furthermore, since (17) reduces to 

we conclude that C 2 0 for square integrable solutions. 
The particular case just discussed leads to equations that are identical to those in the 

factorization method and in supersymmehic quantum mechanics [S-81. For example, long 
ago Infeld [9] developed an equation similar to (20). By substitution of (20) into (16) it 
is easy to obtain an expression similar to that derived by Infeld [5,9] for L(m) which is 
proportional to our C. Furthermore, the only function in the connection formula A ( x )  is 
proportional to the superpotential in supersymmehic quantum mechanics [7,8]. In other 
words, both the factorization method and supersymmetric quantum mechanics appear to be 
a panicular case of the connection method when P = 1, Q = 0 and B' = 0. 

3. Recurrence relations for integrals 

In what follows we develop a recurrence relation that greatly facilitates the calculation of 
the integrals which commonly appear in the right-hand side of (17). To this end we first 
multiply (2) by f ( x ) Z ' ( x ) ,  where f ( x )  is an arbitrary well behaved function, and integrate 
the resulting equation between XI and xz. Rearranging the first two terms of the integrand 
as fPZ'Z" = k(fPZn)' - 4 ( f P ) ' Z R  and fkoZZ' = f(f&Z2)' - f ( f & ) ' Z 2 ,  and 
assuming that both f PZn and f&Z' vanish at the end-points, we obtain 
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We next multiply (2) by g ( x ) Z ( x ) ,  where g ( x )  is another well behaved function, and operate 
exactly in the same way to obtain 

Choosing g = [ f Q  - ( f P ) ’ / 2 ] / P  we eliminate the terms containing Z’* between the two 
equations above. The resulting expression 

(25) 

allows us to calculate the integrals that are necessary to compare the norms of the functions 
Y and Z. In particular, when P = 1 and Q = 0 then Eo = Ro, Z = 0, and (25) reduces to 

Equation (25) is a generalization of the well known diagonal hypervirial relations [lo]. 

examples in mathematical physics and quantum mechanics. 
In the remainder of this paper we apply the general results just obtained to some selected 

4. Bessel’s equation 

Bessel’s equation 

x Z y ” ( x )  + x ~ ’ ( x )  + (x2 - n2)Y(x)  = 0 (27) 

is a particular case of (1) with P ( x )  = x z ,  Q ( x )  = x ,  and R ( x )  = x 2  - n’, where n is 
a real number. We write & ( x )  = x2 - m2 so that after elimination of xY’  as discussed 
before we have R(r) = &) + 4 and Ro(x)  = E&) + a. It is not difficult to verify that 
for this example the polynomials 

1 

are solutions to (1 1) and (12), provided that the coefficients satisfy the recurrence relations 

where 

uj = z j ( j  + 1). 
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For simplicity we look for the minimal polynomial solution, i.e. the polynomial with the 
least number of terms. It follows from (29) and (30) that bD+l = 0 for all values of i. 
Furthermore, setting bk-2  = bk+T = 0 and bk # 0 assures us that 6, = 0 for all j # k .  
This last condition requires that uk+z = uk = 0, which is possible provided that k = -1 
or k = -2. The former leads to the trivial solution m = An and the latter to a non-trivial 
relationship between m and n: 

F M Femrindez et a1 

(m2 - n2)' + 2(m2 - 2) + 1 - 4m2 = 0. (32) 

The two roots of this quadratic equation are consistent with n = m + U, where u2 = 1. 
One easily verifies that polynomial solutions of larger order connect Bessel's functions with 
In -ml > 1. Such larger polynomials also arise from repeated application of the connection 
formula (8) with the minimal polynomials followed by the use of the differential equation 
(6) to eliminate second and higher derivatives of a. 

The explicit expressions for the minimal polynomials A ( x )  and B(x)  just obtained are 

b 
B ( x )  = - 

2x X 2  
B (x )  = b 

b(2mu + 1) A ( x )  = - (33) 

where we have written b instead of b-2, which depends on n, to simplify the notation. 
Although the functions A ( x )  and B ( x )  in (33) apply to both cases n = m i  1, it is convenient 
to choose one of them and derive the inverse transformation according to (14H16) using 
the same value of b. This procedure gives 

- 1 
Bo = 

2bx b 
h u t 1  C = b' A&) = - (34) 

Taking into account (13) and the results just obtained, and writing Y,, and Y, = Y.-l instead 
of Y and 2, respectively, we conclude that 

(35) 
1 --n 1 n  

Y, = b (7 + $) Yn-l Y"-l = -i; (; t &) Y" 
which agree with standard recurrence relations for Bessel's functions if b = - 1  [ll]. 

is constant we can try the simplified version of the connection method. 
Dividing (27) by x2,  the resulting equation is of the form (1) with P = 1, Q = l /x  and 

= (x2 - n2) /xZ .  Elimination of the terms Y'jx and Z'/x leaves R = 1 + (1 - 4n2)/4x2 
and & = 1+(1 -4m2)/4x2. These functions satisfy (21). provided that one of the following 
equations is satisfied: m2 = n2, (m + n)Z = 1 and (m - n)2 = 1. The first one leads to 
trivial results and the remaining two reflect the fact that Bessel's equation is invariant under 
the change of the sign of n (or m). Therefore, it is sufficient to consider the condition 
n = m +U. Since (20) and (16) yield A ( x )  = -B(2m tu) /2ax and C = E', respectively, 
we recover the results obtained above from the minimal polynomial solutions. 

Since 

5. Legendre's equation 

Legendre's equation 

(1 - x2)Y"(x) - 2xY'(x) +Z(l t l ) Y ( X )  = 0 
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where E is a real constant, is also of the form (1) with P ( x )  = 1 - xz, Q ( x )  = -2x and 
& x )  = A = l(1 + 1). It is our purpose to relate a solution to (36) with a solution to the 
same equation with R o ( x )  = A' = l'(1' + 1). After elimination of the term 2rY' according 
to (3) and (4) we are left with an equation like (5) with 

1 
R ( x )  = A + - 

1 - x 2  
(37) 

and a similar expression for Ro(x) .  
A straightforward calculation shows that the coefficients of the polynomials (28) that are 

solutions to the differential equations (11) and (12) for this example satisfy the recurrence 
relations 

j + l  A - A ' -  j(j+ 1) 
bj-1 i # O  

2 j  
bjti - nj -- 

2 

where 

i(i2 - 1)(j + 2) 
2 

uj = j ( j  - I)(A + A' - j2) 
(40) 

uj = 

wj = [A -A' - ( j  - l ) ( j  - 2)l 
A - A' - j ( j  - 1) 

2 
- 2A'(j - 1)'. 

In order to obtain a minimal solution we set bU+1 = 0 for all i, bk-2 = bk-4 = bk+z = 
bk+ = 0 and bk # 0, which is possible provided that either k = 0 and WO = 0 or k = 1 and 
wl = 0. The latter condition leads to the trivial result A = A', and the former determines 
the following non-trivial relationship between h and A': 

(A - A')' - 2(A - A') - 4A' = 0. (41) 

The two roots of this quadratic equation are equivalent to 1 = 1' & 1, and without loss of 
generality we choose 1 = I' + 1. As in the preceding example, polynomial solutions of 
larger order connect solutions to Legendre's equation with [ I  - 1'1 > 1. 

The minimal polynomial solutions are 

A ( x )  = (1 - 1)Bx B(x )  = B = constant (42) 

and for the inverse transformation we have 

because C = BZ12. These results determine the recurrence relations 

after hamforming back from Y and 0 to Y and Z, respectively, and setting Y = lj and 
2 = E-,. When 1 is a positive integer and B = -1/1 these equations become well known 
recurrence relations for the Legendre polynomials R ( x )  which satisfy q ( l )  = 1 [ll].  
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6. The generalized Kepler problem 

The radial part of the stationary Schrodinger equation for the generalized Kepler problem 
(or Kratzer potential) is of the form (atomic units are used throughout) 

F M Ferncinde: et a1 

where E is the energy and 2 and I are real constants. The physical solutions satisfy 
Q(0) = 0 and in the case of bound states (Z > 0. E c 0) also Y ( r  --c CO) = 0. The 
parameter A may depend on a potential parameter, on the angular momentum quantum 
number, and also on the dimension of the space. However, for our present purposes E ,  2 
and I are merely real parameters and we disregard their physical meaning. 

We first try to connect solutions to (45) corresponding to different values of A and 
accordingly choose P ( r )  = 1, Q(r)  0 and 

2 2  A 22 It Ro(r) = 2 E +  - - - 
r r2 r r z  

R ( ~ )  = 2 E  + - - - 

These functions satisfy (21) provided that A - I' = 1 f. m, which requires that 
1' 2 - f  (and similarly for A). Substituting 1 = A' + X and solving for I' we obtain 
1' = e(( - 1) and A =e(( + 1). Shape invariance demands that we define t' according to 
1' = e'($' + l), from which it follows that 6' = 5 - 1 or 9' = - E  - 1. The parameters 5 
and 6' are bounded from below, e ,  -a. Under 
such conditions B ( r )  = B = constant, and (20) reads 

e,,, > -4 to be consistent with A,  A' 

A ( r )  = B ( F  z e  - ;) 
The inverse transformation is given by 

where 

C ( t )  = B2 ($ + 2,) . 

(47) 

(49) 

The results just obtained lead to the following recurrence relations or ladder equations: 

These equations apply to both discrete and continuous spectra because we have not yet 
specified the values of the parameters in the differential equation (45) except for the 
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restriction upon A and A'. In the case of a discrete spectrum we have to find the conditions 
under which the solutions are square integrable. Writing equation (22) as 

we conclude that if Y5-1 is square integrable and C(4) z 0 then Yt will also be square 
integrable. As long as t2 < -ZZ/2E we can choose the arbitrary constant B to be 

so that the norms of Qt and are the same. Equations (50) and (51) thus become 

The transformation (54) increases 5 by unity so that U (:)z would eventually become negative 
unless U(.$,+, + 1) = 0. Setting this condition in (54) enables one to obtain a square 
integrable function YeM from which with the help of (55) we derive all the other square 
integrable functions for the same value of E c 0. The possible values of 6 are therefore 
6,. h,+, - 1, . . . , h,+, - U = 6, where v is a positive integer. The value of the energy for 
the bound states connected by the recurrence relations (54) and (55) is therefore given by 
the well known expression 

In order to connect states with different energy one may try Ro(r) = 2 E ' f Z Z j r  - 1 / r 2 ,  
but this choice does not lead to polynomial solutions to (11) and (12). To overcome this 
difficulty we shift the energy dependence to another term of R ( r )  by means of the change of 
coordinate x = r / y ,  y = Z / m ,  which enables us to rewrite the Schrodinger equation 

(57) 

as 

x 2 Y " ( x )  + (-ZZx2+ 2yzx - I )*( , )  = 0 

where + ( x )  = " ( y x ) .  We now choose P ( x )  = x2,  Q ( x )  E 0, 

R ( x )  = -Zzx2 + 2yZx - h Ro(x) = -Z2x2 + 2y'Zx - 1 (58) 

forgetting for the moment the dependence of x on E .  The coefficients of the polynomial 
solutions to the differential equations (11) and (12) for this case satisfy 

b- I 
A Y' 

a0 = bo + - 
Z W - Y )  Y - Y '  
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where 

wj = 2zZ((y - y')' - j '). 
One easily verifies that the minimal solution is bj = 0 if j # -1, which leads to y = y ' h  1, 

(62) 
b 

B(x) = - Y -Y' X 
(y' - ZX) 

b 
A(x)  = - 

where we have defined b = b-l to simplify the notation. The inverse transformation is 
given by 

where 

C = b 2 ( y y ' - A ) .  (64) 
Without loss of generality we choose y = y' + 1 from now on. 

becomes 
In the present case the relation (17) between the norms of the bound states @ and 6 

(65) 

In order to obtain the integral on the right-hand side we make use of (26) with Ro = 
-Z2.+  2y'Zjx - A / x 2  and f ( x )  = x N ,  N = 0,1, ..., which leads to the following 
recurrence relation: 

m lm G(x)'dx = (C + b2[2Zx - 2y' t I ] } ~ ( X ) ~  dx. 

A straightforward calculation yields 

so that 

The transformations determined by (62) and (63) connect bound states as long as y ( y  - 1) > 
A (C > 0). Therefore, y is bounded from below by ymin, y 2 yminr which is related to A 
by h = ymin(y,,.io - 1) thus truncating the downstain recurrence relation. If we choose 

(69) m 
JY[Y(Y  - 1) - A I  

b =  

then the recurrence relations 

Sr, = b ( ( y  - 1 - Zx)YY-I +XY;-;_,) (70) 

do not change the norm of the bound states. 
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7. Inverse quadratic potential 

Model potentials of the form V ( x )  = ( Y / U ( X ) ~ ,  where u(x) has no zeros in (xI, x z ) ,  exhibit 
many physical applications. The functions 

satisfy (21) provided that 

(01 - (Yy 
2((Y + 01’) ‘ 

u’(x)Z + u ( x ) u ” ( x )  = (73) 

Several functions satisfy (73), and we discuss some of them in what follows. 
Although the function u ( x )  = x - xo violates the requirement above when X I  = -CO 

and xz = CO, we consider it here because recently there has been interest in singular 
superpotentials, one of which leads to a potential of the form (Y / (x  - x ~ ) ~  1121. The left- 
hand side of (73) is unity, and substitution of (Y = (Y’ + 2$ shows that (Y’ = :(e - 1) 
and (Y = e(: + 1). Shape invariance requires that 01‘ = e’($’ + 1) so that 8‘ = .$ - 1 or e‘ = -5 - 1 and thus we obtain the partner potentials derived by supersymmetric quantum 
mechanics I121. Depending on the value of 5 these partner potentials may or may not share 
the same Hilbert space [12]. 

Other functions that satisfy (73) are cos(x) (-n/2 < x < np), cosh@) (-CO < x < 
m) and si+) ( - E  < x < E ) .  They give rise to well known potentials in quantum 
mechanics. Here we restrict ourselves to u ( x )  = sin@) because it is probably the most 
useful case in physical applications. Because the left-hand side of (73) is unity as before, 
the potential parameters are 01 = e($ + 1) and 01‘ = e‘($’+ 1) =,$(e - 1) and the eigenvalue 
equation reads 

Y [ ( x )  + (E - -) Y,(x) = 0. (74) 

After obtaining A ( x )  from (20) and A&) and Bo from (15) ( B  is constant) we are led to 
thk recurrence relations 

Y, = B (-e COt(X) + - 3 - 1  dx d l  
(75) 

which connect solutions for real values of e. 
Because the constant is 

C = B’(E -e2) (76) 

the equations above apply to square integrable functions provided that E > $’. The choice 
B = I/- leads to recurrence relations that conserve the norm of Y,(x):  

(77) 
( t C O t ( X ) +  - dx Y,. m d l  Yt-1 = - 
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The physical value of E is such that these recurrence relations terminate conveniently to 
avoid the occurrence of non-integrable functions. 

The recurrence relations or ladder equations just derived are quite general. For example, 
if we choose ( = -m - T, m = 0, 1, ._., then + 1) = mz - i, and the acceptable 
values of E that truncate the ladder are E = [ ( I  + 1) + i, l = 0, 1,. . .. Therefore, 
P;̂  = sin(x)-'~'Y-,-l are the associated spherical harmonics 151. If 4 = -m - y ,  where 
y is an arbitrary positive parameter, then .$(c + 1) = (m f y ) ( m  + y - 1) and E = (1 + y )  . 
In this case we obtain the generalized spherical harmonics 'Pry = sin(x)-Y Y-,-y.  

F M Ferndndez et a1 

1 

2 

8. Constructive algorithm 

The point of view adopted above differs from the strategy commonly followed in both 
the factorization method and supersymmetric quantum mechanics. Instead of constructing 
exactly solvable models from a trial superpotential or a similar function we have 
concentrated od the question whether a given model is exactly solvable or not. In some 
particular cases the answer is straightforwardly provided by the simple consistency condition 
(21). It is not difficult to integrate this equation and generate a constructive algorithm. By 
means of the new functions S = R+Ro and D = R -  Ro we rewrite (21) as (S'lD)' = -D. 
which after integration yields 

S ( x )  = cz + CI 1' D(x') dx' - J' D(x') [' D(x") dx"dx' (78) 

where c1 and cz are arbitrary constants. We realize that R ( x ) ,  R&) and A ( x )  are completely 
determined by the choice of D(x) and the integration constants c1 and CZ. The function 
A ( x )  reads 

The constructive algorithm then proceeds as follows: starting from a trial function D ( x )  we 
obtain the pair of functions R ( x )  and Ro(x) which define two model potentials. If the latter 
differ only in the value of one or more parameters then we have produced a shape invariant 
potential. The quantization condition for the bound states follows from the constant C given 
by (16) with P = 1 and E' = 0. 

To illustrate the procedure we choose 

which after a straightforward calculation leads to 
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The functions R ( x )  and R&) given above s e  not simply related by a change of the 
value of the parameter [. However, we easily obtain a shape-invariant model potential by 
setting c]  =a/[, a being another arbitrary real constant. Following the procedure outlined 
in the preceding sections one can easily derive the recurrence relations or ladder equations 
connecting solutions Qt and Yt-, and calculate the eigenvalues E = 4 2  of the potential 
energy function 

+ 1) V(x) = atan(x) + - 
cosZ(x) 

that represents an asymmetric infinite well in the interval ( - r / 2 ,  r / 2 ) .  For example, the 
eigenvalues and the ground state eigenfunction are, respectively, 

where N is a normalization factor. 
In passing we mention that it is possible to derive the recurrence relations and 

eigenvalues for some quantum-mechanical problems from appropriate changes of variables 
and parameters in other models. For example, substituting ix, ior, -c - 1 and - E .  for 
x, a, [ and E, in the equations above, we obtain the corresponding expressions for the 
Rosen-Morse potential [131. 

9. Further comments and conclusions 

In principle, the connection method developed here generalizes the standard factorization 
method [5,6] in at least two ways. First, it does not assume a particular dependence on the 
potential parameters. In fact, the functions R ( x )  and & ( x )  do not necessarily correspond 
to the same physical problem as shown in the applications of perturbation theory to solve 
the coupled differential equations for A(x) and B ( x )  in an approximate systematic way 
[1-4]. Second, it is not necessary to transform the differential equation into another one 
with P = 1 and Q = 0 because the connection method with B' # 0 applies to the general 
case as illustrated in appendix 2. In principle, this feature makes the connection method 
more general than supersymmevic quantum mechanics in which B = 1. The fact that in 
many cases it may be too difficult to solve the general differential equations for A(x) and 
B ( x )  without a previous transformation of the original differential equation into a simpler 
one does not make the method less general. 

Throughout the paper we adopted two different points of view with respect to'the 
particular case of shape-invatiant potentials. First, we concentrated on whether a given 
potential is shape-invariant and developed a useful consistency condition to answer this 
question in the particular case considered by the factorization method and supersymmetric 
quantum mechanics, namely P = 1, Q = 0 and E' = 0. If two functions R(x) and Ro(x)  
differing in the value of one or more parameters satisfy the consistency condition then we 
have a shape-invariant potential. Second, from the consistency equation we derived closed- 
form expressions for the construction of pairs of potentials similar to the partner potentials 
in supersymmetric quantum mechanics [7,8,12,131. Although this constructive algorithm is 
equivalent to (and certainly can be derived from) that in supersymmetric quantum mechanics, 
it may nevertheless facilitate the obtention of new shape-invariant potentials. 
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Appendix 1 

In this appendix we show a general transformation of the second-order differential equation 
(1) which contains as a particular case the transformation used in section 2 to eliminate the 
term QY'. Although this more general transformation based on a simultaneous change of 
both the dependent and independent variables is well known and has been extensively used 
by Meld and Hull [5] in their discussion of the factorization cases, we outline it here for 
the sake of completeness. 

In order to cast the differential equation 

P ( x ) Y " ( x )  + Q(x)Y'(x)  + k ( x ) Y ( x )  = 0 (Al.1) 

into a more convenient form for the application of either the factorization method or 
supersymmetric quantum mechanics we change the dependent and independent variables 
according to 

Y ( x )  = F(z)'II(z) x = x(z). (A1.2) 

From now on a prime on x indicates a derivative with respect to z and a prime on P or Q 
den0te.s a derivative with respect to x .  Choosing 

we eliminate the term QY' and the differential equation (Al.l) becomes 

d21vo + R ( z ) Y ( z )  = 0 
dz2 

where 

(A1.3) 

(A1.4) 

(A1.5) 

Notice that (A1.3) and (A1.5) reduce to (4) and (7), respectively, in the particular case 
x(z )  = z .  By means of this transformation one can sometimes transform an equation which 
does not satisfy the consistency condition (21) into another equation that satisfies it. 

As an example consider the differential equation 

(1 - x')Y"(x) - yxY'(x)  + AY(x) = 0.  (A1.6) 

Setting P = 1 - x 2 ,  Q = - y x ,  k = h and x ( z )  = -cos(z) in (A1.5) we obtain an inverse 
quadratic potential 

(A1.7) 

that satisfies the consistency equation as shown in section 7. When y = 2m+3 the function 
(A1.7) becomes the expression derived by Infeld and Hull from the differential equation for 
the Gegenbauer functions [5]. 
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Appendix 2 

Here we show that the connection method introduced in section 2 is equivalent to the 
factorization of second-order differential equations of the form (1) that are more general 
than those customarily treated by both the standard factorization method and supersymmetric 
quantum mechanics [5-8]. Instead of removing the terms QY' and QZ' in (1) and (2) as 
we did in section 2, here we directly write 

Y ( x )  = A(x)  + j ( x ) - -  Z(x) ('42. 1 ) ( dx d ,  

( d ,  
ZCX) = A&) + B o ( ~ ) ; i ;  Y ( x ) .  (A2.2) 

Substituting (A2.2) into (A2.1) and re-ordering the resulting equation conveniently, we have 

&BY'' + (A& + AoB + BflA)Y' + (AA0 + S A ;  - l )Y  = 0. (A2.3) 

Comparison of this equation with (1) suggests the choices 

BOB = G P  

 AB^ + A ~ B  + flB; = CQ 

A A ~  + SA;  - I = GE 
where G is an arbitrary function of x .  Analogously, substitution of (A2.1) into (A2.2) leads 
to 

AB0 + AoB + $8' 
AA0 + &A' - 1 = CEO 

GQ (A2.7) 

(A2.8) 

and also to (A2.4). which tells us that the unknown function G is the same in both cases. 

proportional to 5: 
Subtracting (A2.7) from (A2.5) yields 8$ - BOB' = 0, which shows that & is 

d Eo = -- ('42.9) c 
where C is the proportionality constant. The unknown function G follows from (A2.4) and 
(A2.9): G = - B Z / C P .  Adding (A2.5) and (A2.7) and using (A2.4) and (A2.9) enables us 
to obtain 

Substitution of all those results into (A2.8) yields the constant C: 

(A2.10) 

Q - B2 
P P c = + AB' - BA' - - A B  + - R ~ .  (A2.11) 
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In order to obtain a differential equation for b? we subtract (A2.8) from (A2.6) and use 
the results above: 

- 
+ ( R - R o ) - + + A ' = O .  P (A2.12) 

The differential equation for A follows from differentiation of (A2.11) with respect to x :  

- A  Q 
P P  

A" + (i - Ro)- + -A' - (A2.13) 

The expressions just derived generalize those in section 2 and enable one to treat eigenvalue 
equations of the form (1) and (2) directly without their previous transformation into more 
tractable forms. The problem thus reduces to solving the differential equations for A ( x )  
and B ( x )  (or &x)  = P ( x ) B ( x ) ) .  
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